
Class Note: Chapter 9

Securing Database Access

(Updated May 9, 2019)

[The “class note” is the typical material I would prepare for my face-to-face class. Since

this is an Internet based class, I am sharing the notes with everyone assuming you are in

the class.]

With any multiuser computer system, security is a particularly important issue to

address. Oracle database systems are certainly no exception. Without adequate security

controls, malicious users might invade an Oracle database, view confidential information,

and make unauthorized changes to database information. This class/chapter explains the

basic security features of Oracle that you can use to control user access to database

resources.

 User management and authentication

 Privilege management and roles

 Database resource limits

 User password management

More detailed and advanced database security and management are dealt in

a separate course, TEC 5363 Database Security and Reliability.

Chapter Prerequisites

To practice the hands-on exercises in this chapter, you need to start SQL*Plus and

run the following command script at SQL> prompt

location\Sql\chap09.sql

Where location is the file directory where you expanded the supplemental files

downloaded from course web site. For example, after starting SQL*Plus and connecting

as SCOTT, you can run this chapter's SQL command script using the SQL*Plus

command @, as in the following example (assuming that your chap09.sql file is in

C:\temp\Sql).

SQL> @C:\temp\Sql\chap09.sq1;

Once the script completes successfully, leave the current SQL*Plus session open

and use it to perform this chapter's exercises in the order that they appear.

9.1. User Management

The first line of defense against unwanted database access is controlling who can

access the system in the first place. As you already know from previous chapters in this

book, to connect to an Oracle database, a user must have a username in the database. The

following sections explain more about managing database user accounts.

9.1.1. User Authentication

For each database user, you must indicate how you want Oracle to authenticate

use of the new account. When someone attempts to connect to a database with a

username, Oracle authenticates that the person utilizing the username is authorized to use

the account. Oracle can authenticate users via three different techniques: password

authentication, operating system authentication, and global user authentication.

9.1.1.1. Password Authentication

Oracle can authenticate a username with a password. When a user starts an

application, the application prompts for a username and associated password. Oracle then

authenticates the connection request using the user account information managed by the

database. Password authentication is common in distributed processing environments

when users work with client PCs and connect to an Oracle database server across a

network.

When you decide to use password authentication, it's important to have a policy in

place that ensures passwords have a certain degree of complexity and that users routinely

change them. For more information about managing user passwords, see the section

"User Account Management" later in this chapter.

9.1.1.2. Operating System Authentication

Oracle can authenticate a username using the operating system of the computer

that's running the database server. When a user starts an application, the application does

not request connection information from the user. Instead, the application forwards to

Oracle the operating system account information of the user. Oracle then authenticates

the connection request by making sure that the operating system user is registered as a

user in the database. Operating system authentication is common in Oracle host-based

environments when users connect to Oracle using terminals that are directly connected to

the database server.

9.1.1.3. Global User Authentication

Oracle can authenticate a global username using an external network service.

When a user starts an application and makes a connection request, Oracle authenticates

the request with user information managed by an external security service. Oracle

includes its own security service, Oracle Security Server, that you can use to manage

global database users. Global user authentication is common in network environments

where users require access to several Oracle databases, and the network is not necessarily

secure.

EXERCISE 9.1 : Creating a User with Password Authentication

You create a database user using the SQL command CREATE USER. The

following is an abbreviated syntax listing of the CREATE USER command.

 CREATE USER user

 IDENTIFIED BY password
 [DEFAULT TABLESPACE tablespace]

 [TEMPORARY TABLESPACE tablespace]
 [PASSWORD EXPIRE]
 [ACCOUNT {LOCK|UNLOCK}]

Notice that the CREATE USER command lets you create a user with a password,

as well as specify various other settings for the new user account that subsequent sections

of this chapter will explain. For now, just enter the following CREATE USER statement

to create a database user account for a new application developer named Larry Ellison

with an initial password of changethisnow.

CREATE USER lellison
IDENTIFIED BY changethisnow;

EXERCISE 9.2: Changing the Password for a User

Any user can change his/her own password using the following form of the SQL

command ALTER USER.

ALTER USER user
 IDENTIFIED BY newpassword

If you have the necessary privileges as a database administrator, you can also

change another user's password with the same command. For example, enter the

following ALTER USER statement to change the password for the new LELLISON

account.

ALTER USER lellison
IDENTIFIED BY newpassword;

9.1.2. A User's Default Tablespace

A tablespace is a logical storage division of a database that organizes the physical

storage of database information. (See Chapter 10 for more information about

tablespaces.) For each database user, you can set a default tablespace. When the user

creates a new database object, such as a table or index, and does not explicitly indicate a

tablespace for the object, Oracle stores the new database object in the user's default

tablespace. Unless you specify otherwise, a user's default tablespace is the SYSTEM

tablespace.

9.1.3. A User's Temporary Tablespace

Often, SQL statements require temporary work space to complete. For example, a

query that joins and sorts a large amount of data might require temporary work space to

build the result set. When necessary, Oracle allocates temporary work space for a user's

SQL statements in the user's temporary tablespace. Unless you specify otherwise, a user's

temporary tablespace is the SYSTEM tablespace.

EXERCISE 9.3: Altering a User's Tablespace Settings

When you create a user with the CREATE USER command, you can explicitly

set the user's default and temporary tablespace settings. Subsequently, you can alter a

user's default and temporary tablespace settings using the following form of the SQL

command ALTER USER.

ALTER USER user
 DEFAULT TABLESPACE tablespace

 TEMPORARY TABLESPACE tablespace

Exercise 9.1 created the user LELLISON without specifying settings for the user's

default and temporary tablespaces; therefore, LELLISON's default and temporary

tablespaces are set to the SYSTEM tablespace. As you'll learn subsequently in Chapter

12 of this book, typical database users should not have their default and temporary

tablespaces set to the SYSTEM tablespace for performance reasons. Therefore, enter the

following ALTER USER statement to change LELLISON's tablespace settings.

ALTER USER lellison

 DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp;

9.1.4. Locked and Unlocked User Accounts

Oracle lets you lock and unlock a user account at any time so that you can control

database access through the account without having to drop and recreate it. A user cannot

connect to Oracle after you lock the user's account. To subsequently allow a user access

through an account, you must unlock the account. Why would you want to lock and

unlock user accounts?

 You might want to lock a user's account when the user takes a temporary

leave of absence from work, but plans on returning in the future.

 When a person leaves your company, you might want to lock the user's

account rather than drop the account, especially if the user's schema

contains tables and other objects that you want to preserve.

 You typically lock a user account that functions only as a schema for

logically organizing all of an application's database objects.

When you create a new database user, the new account is unlocked by default.

NOTE
Later in this chapter, you'll see how to configure Oracle so that it locks a

user account automatically after a user's password expires or following a

consecutive number of failed connection attempts.

EXERCISE 9.4: Locking and Unlocking a User Account

In Exercise 9.1, the example CREATE USER statement created the new user

without specifying whether to lock or unlock the account. Therefore, Oracle creates the

user with the default UNLOCK option for the ACCOUNT parameter. For practice, enter

the following two ALTER USER statements to lock and then unlock the LELLISON

account.

ALTER USER lellison

ACCOUNT lock;

ALTER USER lellison
ACCOUNT unlock;

9.1.5. Default Database Users

This course on Oracle database would be remiss if it did not mention that every

Oracle database has two default database user accounts: SYS and SYSTEM.

 The SYS account owns the database's data dictionary objects. You should never

connect to Oracle using the SYS account unless it is absolutely necessary to

install supplemental data dictionary objects owned by SYS. The default password

for the SYS account is CHANGE_ON_INSTALL (This might not be true for

Oracle 11g or 12c where it forces the user to specify passwords during

installation).

 The SYSTEM account is the default database administrator account that you can

use to get started with a new database. For accountability, it's best to create

distinct user accounts capable of database administration rather than use the

default SYSTEM account. The default password for the SYSTEM account is

MANAGER. (This might not be true for Oracle 11g or 12c where it forces the

user to specify passwords during installation).

Both the SYS and SYSTEM accounts are all-powerful database administrator

accounts that can perform any database operation. Therefore, it is very important to

change the default passwords for the SYS and SYSTEM accounts soon after database

creation to prevent malicious users from using these accounts.

NOTE
For backward compatibility, Oracle8i also supports the special alias INTERNAL

for the SYS account. This “internal” account was desupported after Oracle9i.

9.2. Privilege Management

After you create the users for an Oracle database system, they cannot connect to

the database server nor do anything of consequence unless they have the privileges to

perform specific database operations. For example, consider the following limitations:

 A user cannot connect to an Oracle database unless the user has the CREATE

SESSION system privilege.

 A user cannot create a table in his or her corresponding schema unless the user

has the CREATE TABLE system privilege.

 A user cannot delete rows from a table in a different schema unless the user has

the DELETE object privilege for the table.

This short list reveals just some of the different privileges that you can use to

control access to operations and data within an Oracle database. The following sections

explain more about the different types of database privileges, as well as how to grant

them to and revoke them from users.

9.2.1. Types of Database Privileges

If you read the list in the previous section closely, you'll notice that there are two

different kinds of privileges that control access to an Oracle database: system privileges

and object privileges.

9.2.1.1. System Privileges

A system privilege is a powerful privilege that gives a user the ability to perform

some type of system-wide operation. For example, the following examples are just a few

of almost 100 system privileges in Oracle:

 A user with the CREATE SESSION system privilege can connect to the

database server and establish a database session.

 A user with the CREATE TABLE system privilege can create a table in

his or her own schema.

 A user with the CREATE ANY TABLE system privilege can create a

table in any schema of the database.

 A user with the CREATE ANY TYPE system privilege can create types

and associated type bodies in any schema of the database.

 A user with the SELECT ANY TABLE system privilege can query any

table in the database.

 A user with the EXECUTE ANY PROCEDURE system privilege can

execute any stored procedure, stored function, or packaged component in

the database.

 A user with the EXECUTE ANY TYPE system privilege can reference

and execute methods of any type in the database.

Because system privileges are very powerful privileges that can affect the security

of the entire database system, carefully consider what types of users require system

privileges. For example:

 A database administrator is the only type of user that should have the

powerful ALTER DATABASE system privilege, a privilege that allows

someone to alter the physical structure and availability of the database

system.

 Developers typically require several system privileges, including the

CREATE TABLE, CREATE VIEW, and CREATE TYPE system

privileges to build database schemas that support front-end applications.

 Every user in the system typically has the CREATE SESSION system

privilege, the privilege that allows a user to connect to the database server.

At first, the overwhelming number of system privileges might appear

intimidating. However, because each system privilege is a focused access right for a

specific database operation, it's easy to provide each type of database user with just the

right amount of privileges--no more or less power than what is necessary to accomplish

their work.

9.2.1.2. Object Privileges

An object privilege is a privilege that gives a user the ability to perform a specific

type of operation on a specific database object, such as a table, view, or stored procedure:

 A user with the SELECT object privilege for the CUST view can query

the view to retrieve information.

 A user with the INSERT object privilege for the CUSTOMERS table can

insert new rows into the table.

 A user with the EXECUTE privilege for the partType object type can use

the type when building other database objects and execute the type's

methods.

These examples are just a few of the object privileges that are available for tables,

views, sequences, procedures, functions, packages, object types, and server file

directories. Depending on how an application is designed, users might require object

privileges for the underlying database objects that the application uses. For example, in a

typical order-entry application, a user might need the SELECT, INSERT, UPDATE, and

DELETE privileges for the CUSTOMERS, ORDERS, and ITEMS tables, as well as the

SELECT and UPDATE privileges for the PARTS table. Because each object privilege is

focused on the operation that it permits, you can manage database access with absolute

control.

9.2.2. Granting and Revoking Users' Privileges

You can give a user a system or object privilege by granting the privilege to the

user with the SQL command GRANT. To withdraw a privilege from a user, you revoke

the privilege from the user with the SQL command REVOKE. Oracle does not let just

anyone grant and revoke privileges to and from users. Consider the following

requirements when managing individual system and object privileges for database users:

 You can grant a user a system privilege only if you have the system

privilege with the administrative rights to grant the privilege to other

users.

 You can grant a user a database object privilege only if you own the

associated database object or if you have the object privilege with the

administrative rights to grant the privilege to other users.

The following practice exercises provide you with more information about using

the GRANT and REVOKE commands.

EXERCISE 9.5: Granting a System Privilege to a User

You can grant a system privilege to a user, with or without administrative rights

for the privilege, using the following form of the SQL command GRANT.

GRANT privilege [, privilege] ...

TO user [, user] ...
[WITH ADMIN OPTION]

For example, a typical application developer requires the ability to connect to the

database and then create tables, views, sequences, and other types of schema objects

necessary to support an application. Considering this, enter the following GRANT

statement to grant several system privileges to LELLISON.

GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW, CREATE ANY INDEX,
 CREATE SEQUENCE, CREATE TYPE

TO lellison
WITH ADMIN OPTION;

NOTE
To grant a system or object privilege to every user in the database, grant the

privilege to the keyword PUBLIC rather than to a specific user. PUBLIC is a

special group in an Oracle database that you can use to make a privilege

available quickly to every user in the system. However, use this feature carefully

so that you do not open up security holes in your database.

EXERCISE 9.6: Revoking a System Privilege from a User

If you make a mistake while granting a user some privileges, or later decide that a

user should no longer have a system privilege as part of their privilege domain (set of

available privileges), you can revoke the system privilege using the following form of the

SQL command REVOKE.

REVOKE privilege [, privilege] ...

FROM user [, user] ...

For example, the GRANT statement in the previous practice exercise grants the

user LELLISON several system privileges with the ADMIN option. Consequently,

LELLISON can use the system privileges to perform database work and can grant the

same system privileges to other users at his discretion. Typical application developers

should not have the ability to grant system privileges to other database users. Therefore,

enter the following REVOKE statement to revoke LELLISON's access to the system

privileges granted in the previous exercise.

REVOKE CREATE SESSION, CREATE TABLE, CREATE VIEW, CREATE ANY INDEX,

CREATE SEQUENCE, CREATE TYPE
FROM lellison;

Next, regrant the system privileges to LELLISON, but this time without the

ADMIN option.

GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW, CREATE ANY INDEX,
CREATE SEQUENCE, CREATE TYPE

TO lellison;

EXERCISE 9.7: Granting an Object Privilege to a User

You can grant an object privilege for a specific schema object to a user, with or

without the right to grant the privilege to other users, using the following form of the

SQL command GRANT.

GRANT
 { privilege [, privilege] ...

 | ALL [PRIVILEGES] }}
 ON {[schema.]object|DIRECTORY directory }

 TO user [, user] ...
 [WITH GRANT OPTION]

NOTE
To grant an object privilege, you must own the object or have been granted the

object privilege with the GRANT option.

Table 9-1 contains a list of the privileges available for the most common types of

schema objects. For example, your current practice schema (PRACTICE09) contains the

familiar CUSTOMERS, ORDERS, ITEMS, PARTS, and SALESREPS tables (in other

words, your current schema owns these tables). Enter the following statements to grant

the user LELLISON various privileges for the tables in your schema.

GRANT INSERT, UPDATE, DELETE, SELECT
 ON customers
 TO lellison;

GRANT ALL PRIVILEGES
 ON orders
 TO lellison

 WITH GRANT OPTION;

GRANT SELECT,
 INSERT (id, lastname, firstname),

 UPDATE (lastname, firstname),
 REFERENCES (id)

 ON salesreps
 TO lellison;

The first statement grants the INSERT, UPDATE, DELETE, and SELECT

privileges for the CUSTOMERS table to LELLISON. The second statement uses the

ALL PRIVILEGES shortcut to grant all object privileges for the ORDERS table to

LELLISON with the option to grant the table privileges for the ORDERS table to other

users. The final statement grants the SELECT, INSERT, UPDATE, and REFERENCES

privileges for the SALESREPS table to LELLISON--notice that the INSERT, UPDATE,

and REFERENCES privileges are granted for specific columns only.

Type of Object Object Privileges Special Notes

Table

SELECT, INSERT,

UPDATE, DELETE,

ALTER, INDEX,

REFERENCES

The INDEX privilege lets the grantee create an

index for the table. The REFERENCES privilege lets

the grantee reference the table when declaring a

referential integrity constraint. You can grant

column-selective privileges for the INSERT, UPDATE,

and REFERENCES privileges.

View
SELECT, INSERT,

UPDATE, DELETE

You can grant column-selective privileges for

the INSERT and UPDATE privileges.

Sequence SELECT, ALTER

The SELECT privilege lets the grantee use the sequence

to generate and reuse sequence numbers with the

sequence's NEXTVAL and CURRVAL pseudo-columns.

Procedure,

Function,

Package,

Object Type

EXECUTE

The EXECUTE privilege for an object type lets the

grantee use the object type when building other

schema objects and types, and lets the grantee

execute the type's methods.

TABLE 9-1. The Object Privileges for the Most Common Types of

Schema Objects in an Oracle Database

EXERCISE 9.8: Revoking an Object Privilege from a User

You can revoke an object privilege from a user with the following form of the

SQL command REVOKE.

REVOKE
 { privilege [, privilege] ...

 ALL [PRIVILEGES] }
 ON {[schema.]object|DIRECTORY directory }

FROM user [,user] ...
[CASCADE CONSTRAINTS]
[FORCE]

The CASCADE CONSTRAINTS option indicates that you want to drop all

referential integrity constraints created using a REFERENCES object privilege that is

being revoked. The FORCE option is necessary when revoking the EXECUTE object

privilege for an object type that has table dependencies.

For example, enter the following statement to revoke some of the privileges you

granted to LELLISON in the previous practice exercise.

REVOKE UPDATE, DELETE ON customers
FROM lellison;

REVOKE ALL PRIVILEGES ON orders

FROM lellison;

REVOKE REFERENCES ON salesreps
FROM lellison
CASCADE CONSTRAINTS;

9.2.3. Privilege Management with Roles

The system and object privileges necessary to use a typical database application

can be numerous. When a database application supports a large user population, privilege

management can become a big job quickly if you manage each user's privileges with

individual grants. To make security administration an easier task, you can use roles. A

role is a collection of related system and object privileges that you can grant to users and

other roles. For example, when you build a new database application, you can create a

new role that has the database privileges necessary to run the program. After you grant

the role to an application user, the user can start the application to connect to the database

and accomplish work. If the privileges necessary to run the application change, all that's

necessary is a quick modification of the role's set of privileges. All grantees of the role

see the change in the role automatically and continue to have the privileges necessary to

use the application.

9.2.3.1. Predefined Database Roles

Oracle has many predefined roles that you can use to quickly grant privileges to

common types of database users. The following is a short list of the five most commonly

used predefined database roles that you might use.

CONNECT

A basic user role that lets the connect to the

database and then create tables, views,

synonyms, sequences, and a few other

types of objects in the associated schema.

RESOURCE

Intended for a typical application

developer, this role lets the grantee create

tables, sequences, data clusters, procedures,

functions, packages, triggers, object types,

function-based indexes, and user-defined

operators in the associated schema.

DBA

Intended for administrators, this role lets

the grantee perform any database function,

as it includes every system privilege.

Furthermore, a grantee of the DBA role can

grant any system privilege to any other

database user or role.

SELECT CATALOG_ROLE

Lets the grantee query administrator

(DBA_) data dictionary views.

EXECUTE CATALOG_ROLE

Lets the grantee execute the prebuilt

DBMS utility packages.

CAUTION
 Although Oracle provides predefined roles to help manage privileges for typical

database users, an application that relies on these roles might not necessarily

function correctly. That's because you can change a predefined role's privilege set

or even drop the role altogether.

9.2.3.2. User-Defined Roles

You can create as many roles as you need for an Oracle database. After creating a

role, you grant privileges and other roles to it to build the role's set of privileges. Then

you grant the role to users so that they have the privileges necessary to complete their

jobs.

9.2.3.3. Enabled and Disabled Roles

A grantee of a role does not necessarily have access to the privileges of the role at

all times. Oracle allows applications to selectively enable and disable a role for each

individual. After an application enables a role for a user, the privileges of the role are

available to the user. As you might expect, after an application disables a role for a user,

the user no longer has access to the privileges of the role. Oracle's ability to dynamically

control the set of privileges available to a user allows an application to ensure that users

always have the correct set of privileges when using the application.

For example, when a user starts an order-entry application, the application can

enable the user's ORDER_ENTRY role so that the user can accomplish work. When the

user finishes working, the application can disable the user's ORDER_ENTRY role so that

the user cannot use the order-entry application privileges when working with a different

application.

9.2.3.4. Default Roles

Each user has a list of default roles. A default role is a role that Oracle enables

automatically when the user establishes a new database session. Default roles make it

convenient to enable roles that users always require when working with Oracle, no matter

which application they use.

9.2.3.5. Role Authentication

To prevent unauthorized use of a role, you can protect a role with authentication.

Oracle can authenticate the use of a role using the same three authentication techniques as

with database users: password authentication, operating system authentication, and global

role authentication. Oracle authenticates role usage when a user or application attempts to

enable the role.

9.2.3.6. Creating, Managing, and Using Roles

In the previous exercises of this chapter, you granted several system and object

privileges directly to a user account. Consider the overhead if you had to repeat this

process for 100-plus developers in a large workgroup. To help make privilege

management easier for the application developers in your system, the next few practice

exercises show you how to define a new role called APPDEV that you can grant to

application developers' accounts.

EXERCISE 9.9: Creating a Role

To create a new role, you use the SQL command CREATE ROLE. The following

is an abbreviated version of this command's syntax.

 CREATE ROLE role

[NOT IDENTIFIED |IDENTIFIED BY password]

Enter the following SQL command to create a new role for application developers

in our system.

CREATE ROLE appdev
IDENTIFIED BY yeRtw;

NOTE
When you create a role, Oracle automatically grants you the role with the

administrative rights to alter, drop, and grant the role to other roles and users.

Additionally, a role is owned by the creator of the role.

EXERCISE 9.10: Granting System Privileges and Roles to a Role

The syntax of the SQL command GRANT for granting system privileges and

other roles to a role is basically the same as in Exercise 9.5.

GRANT privilege|role [, privilege|role] ...

TO role [, role] ...
[WITH ADMIN OPTION]

For example, enter the following statement to grant several system privileges to

the new APPDEV role.

GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW, CREATE ANY INDEX,
CREATE SEQUENCE, CREATE TYPE

TO appdev;

NOTE
If you grant the ADMIN option for a role, the grantee can grant, alter, or drop the

role, and can grant the role to other users and roles. To prevent security holes in

your system, it is not wise to grant system privileges and roles with administrative

rights to other roles.

EXERCISE 9.11: Granting Object Privileges to a Role

The syntax of the SQL command GRANT for granting object privileges to a role

is basically the same as in Exercise 9.7--just specify the name of one or more roles rather

than one or more users. For example, enter the following statements to grant several

object privileges to the new APPDEV role.

GRANT INSERT, UPDATE, DELETE, SELECT
ON customers

TO appdev;

GRANT ALL PRIVILEGES
ON orders

TO appdev;

GRANT SELECT,
INSERT (id, lastname, firstname),

UPDATE (lastname, firstname)
ON salesreps
TO appdev;

NOTE
Oracle does not permit you to grant the REFERENCES object privilege for a

table to a role--when a user needs this privilege, you must grant it to the user

directly.

EXERCISE 9.12: Granting a Role to a User

To grant a role to a user, you use the following syntax of the SQL command

GRANT:

GRANT role [, role] ...

 TO user [, user] ...
[WITH ADMIN OPTION]

If you grant the ADMIN option for a role to a user, the user can grant, alter, or

drop the role, and can grant the role to other users and roles. Use this option judiciously.

For example, enter the following SQL statements to create a new database user

account for another application developer, and then grant the APPDEV role to the new

user.

CREATE USER rlane

 IDENTIFIED BY changethisnow
DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp
ACCOUNT UNLOCK;

GRANT appdev TO rlane;

With just one grant statement, the new user RLANE has the necessary privileges

to work as an application developer in your database. Furthermore, if you need to change

the privileges for application developers, all that you need to do is grant privileges to and

revoke privileges from the APPDEV role-all grantees of the APPDEV role will

automatically be subject to the new privilege domain of the role.

EXERCISE 9.13: Setting a User's Default Role

When you grant a role to a user, Oracle automatically adds the role to the user's

list of default roles. You can explicitly set a user's list of default roles using the following

syntax of the SQL command ALTER USER.

ALTER USER user

 [DEFAULT ROLE

 {role [, role] ...

 |ALL [EXCEPT role [, role] ...]

 | NONE }} }

You can specify a role as a user's default role after the user has been granted the

role directly (you cannot specify roles received indirectly through other roles).

Furthermore, you cannot specify a role as a user's default role if the role is authenticated

by the operating system or by a security service--roles authenticated by passwords require

no passwords at connect time. Notice that you can specify individual roles, use the ALL

clause to specify all or all but a list of roles, or specify no default roles for the user.

NOTE
If a user does not have any default roles with the CREATE SESSION system

privilege, you must grant the CREATE SESSION system privilege directly to the

user, or else the user will not be able to establish a database session.

Enter the following ALTER USER statement to modify the list of default roles for

the new RLANE user account.

ALTER USER rlane
DEFAULT ROLE appdev;

Subsequently, when RLANE connects to your database, Oracle will automatically

make available the privileges granted to the APPDEV role.

EXERCISE 9.14: Enabling and Disabling a Role

You can explicitly enable and disable access to the privileges of a role using the

SQL command SET ROLE. As discussed earlier in this section of the chapter,

applications commonly use this command to make sure that application sessions have the

appropriate set of privileges for using the application. The syntax of the SET ROLE

command is as follows:

SET ROLE

 { role [IDENTIFIED BY password] [, role [IDENTIFIED BY password] ...]
 | ALL [EXCEPT role [, role] ...]
 | NONE }

There are several important points to understand before you use the SET ROLE

command:

 Your session can use the SET ROLE command with the ALL option to enable all

roles granted to your account. However, when you want to enable a role that

requires a password, you must specify the role and its password using the

IDENTIFIED BY parameter.

 You can disable all roles for your session using the NONE option of the SET

ROLE command.

 Oracle automatically disables any role granted to you that you do not enable with

the SET ROLE command.

To illustrate the way that the SET ROLE command functions, consider that your

current user account (PRACTICE09) has been granted the following roles: CONNECT,

RESOURCE, SELECT_CATALOG_ROLE (which has been granted the HS_ADMIN_

ROLE), and APPDEV. To display the list of the roles currently enabled by your session,

enter the following query of the SESSION_ROLES data dictionary view.

SELECT * FROM session_roles;

The result set is as follows:

ROLE

CONNECT

RESOURCE
SELECT_CATALOG_ROLE
HS_ADMIN_ROLE

Now enter the following SET ROLE statement to enable the APPDEV role and

disable all other roles for your current SQL*Plus session.

SET ROLE appdev IDENTIFIED BY yeRtw;

Next, requery the SESSION_ROLES view, and you should see the following

result set:

ROLE

APPDEV

To enable all of your roles for your current session (CONNECT, RESOURCE,

and APPDEV), you must enter the following SET ROLE statement.

SET ROLE

CONNECT,
RESOURCE,

SELECT_CATALOG_ROLE,
appdev IDENTIFIED BY yeRtw;

Notice that this SET ROLE statement does not list the HS_ADMIN_ROLE,

which is part of the SELECT CATALOG_ROLE's privilege domain. That's because

Oracle automatically enables the roles granted to a role that you explicitly enable.

9.3. Resource Limitation

In a multiuser database system, it's prudent to limit each user's access to system

resources. Otherwise, one user might consume an inordinate amount of database resource

at the expense of other users. For example, when Oracle automatically terminates all

database sessions that remain idle for an extended period of time, the server can eliminate

unnecessary overhead and provide more memory, CPU cycles, and other system

resources to sessions that are performing real work. The following sections explain the

features of Oracle that you can use to limit access to several different system resources.

9.3.1. Tablespace Quotas

A user cannot create objects such as tables and indexes in a tablespace unless the

user has a quota for the tablespace. A tablespace quota limits how much space a user's

database objects can consume in the tablespace. A user can have a quota for zero, one, or

all tablespaces in the database--it's entirely up to you. When you

create or alter a user and give the user a tablespace quota, you set the quota as a specific

number of bytes in the tablespace or as an unlimited amount of space in the tablespace.

EXERCISE 9.15: Providing Specific Tablespace Quotas for a User

To give a current user a quota for one or more tablespaces in the system, you can

use the following form of the SQL command ALTER USER.

ALTER USER user

 [QUOTA (integer [K|M] | UNLIMITED} ON tablespace] ...

For example, enter the following statement to provide the user LELUSON with

the right to use 5MB of space in the USERS tablespace.

ALTER USER lellison

QUOTA 5M ON users;

Now enter the following statement to provide the user RLANE with the right to

an unlimited amount of space in the USERS tablespace.

ALTER USER rlane

QUOTA UNLIMITED ON users;

EXERCISE 9.16: Granting Unlimited Quota for all Tablespaces

When a user must have an unlimited quota for every tablespace in the database,

you can grant the user the UNLIMITED TABLESPACE system privilege, rather than

giving the user an unlimited quota for each tablespace in the system. For example, enter

the following statement to grant the user RLANE the UNLIMITED TABLESPACE

system privilege.

GRANT UNLIMITED TABLESPACE TO rlane;

NOTE
Oracle does not let you grant the UNLIMITED TABLESPACE system privilege to

a role.

9.3.2. Resource Limit Profiles

To control the consumption of several other types of system resources, you can

use resource limit profiles. A resource limit profile is a set of specific resource limit

settings that you assign to one or more database users. Using a resource limit profile, you

can limit consumption of the following system resources:

 CPU time (in hundredths of a second), per session or per statement

 Logical disk I/Os, per session or per statement

 Concurrent database sessions per user

 The maximum amount of connect time and idle time (in minutes) per session

 The maximum amount of server memory available to a multithreaded server

session

9.3.2.1. User Account Management

You can use resource limit profiles to enforce several other security policies for

database users. Using a resource limit profile, you can control the following settings for

each user account that is assigned the profile:

 The number of consecutive failed connection attempts to allow before

Oracle locks the account

 The lifetime of the account's password, in days, after which the password

expires

 The number of days (grace period) that a user can use an expired password

before locking the account

 The number of days that must pass, or the number of times that an

account's password must be changed, before the account can reuse an old

password

 Whether or not to check an account's password for sufficient complexity

to prevent an account from using an obvious password

9.3.2.2. The Default Profile

Every Oracle database has a default resource limit profile. When you create a new

database user and do not indicate a specific profile for the user, Oracle automatically

assigns the user the database's default profile. By default, all resource limit settings of the

database's default profile are set to unlimited; account management settings vary.

When you create a resource limit profile, you can set specific resource limit

settings or defer to the corresponding setting of the database's default profile. At any

time, you can alter the settings of a database's default profile just like user-defined

profiles.

9.4. Managing Resource Limit Profiles

Several steps are necessary to configure and enforce resource limitation using

profiles in an Oracle database.

1. Enable resource limitation for the database instance.

2. Create one or more profiles.

3. Assign each user's profile.

The following practice exercises teach you how to complete these steps for

managing resource limitation, and more.

EXERCISE 9.17: Enabling Resource Limitation

By default, resource limitation is not enforced for your starter database.

Therefore, the first step necessary to limit user access to server resources is to enable the

enforcement of resource limitation at the instance level. You can enable and disable the

enforcement of resource limitation without having to shut down and restart the Oracle

service by using the following form of the SQL command ALTER SYSTEM.

ALTER SYSTEM

 SET RESOURCE_LIMIT = {TRUE|FALSE}

To enable the enforcement of resource limitation for the current database instance,

enter the following ALTER SYSTEM statement.

ALTER SYSTEM

SET RESOURCE_LIMIT = TRUE;

NOTE
The example ALTER SYSTEM statement in this exercise enables the enforcement

of resource limitation only for the life of the current database instance--if you

shut down and restart Oracle, the enforcement of resource limitation is subject to

the setting of the RESOURCE_LIMIT parameter in your server's initialization

parameter file. If you plan to use resource limitation permanently, edit your

server's parameter file and include the following parameter: RESOURCE_LIMIT

= TRUE.

EXERCISE 9.18: Creating a Profile

In this exercise, you will create a resource limit profile that you can use with the

new application developers in your practice database. To create a new profile, you use the

SQL command CREATE PROFILE, which has the following syntax:

CREATE PROFILE profile LIMIT

 (SESSIONS_PER_USER {integer| UNLIMITED | DEFAULT}]

 [CPU_PER_SESSION {integer| UNLIMITED | DEFAULT}]

 [CPU_PER_CALL {integer| UNLIMITED | DEFAULT}]

 [CONNECT TIME {integer| UNLIMITED | DEFAULT}]

 [IDLE_TIME {integer| UNLIMITED | DEFAULT}]

 [LOGICAL_READS_PER_SESSION {integer| UNLIMITED | DEFAULT}]

 [LOGICAL_READS_PER_CALL {integer| UNLIMITED | DEFAULT}]

 [COMPOSITE_LIMIT {integer| UNLIMITED | DEFAULT}]

 [PRIVATE_SGA {integer [KIM]| UNLIMITED | DEFAULT}]

 [FAILED_LOGIN_ATTEMPTS {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_LIFE_TIME {integer| UNLIMITED | DEFAULT}]

 [PASSWORD _REUSE_TIME {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_REUSE_MAX {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_LOCK_TIME {integer| UNLIMITED | DEFAULT}]

 (PASSWORD_GRACE_TIME {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_VERIFY_FUNCTION {NULL| function | DEFAULT}]

Enter the following statement to create a new resource limit profile:

CREATE PROFILE appdev LIMIT

 SESSIONS_PER_USER 5

 CPU_PER_SESSION UNLIMITED

 CPU_PER_CALL 3000

 CONNECT_TIME UNLIMITED

 IDLE_TIME 30

 LOGICAL_READS_PER_SESSION UNLIMITED

 LOGICAL_READS_PER_CALL 1000

 PRIVATE_SGA 200K;

Note the following settings in our new APPDEV profile:

 A profile user can have at most five concurrent database sessions open.

 A profile user session can use an unlimited amount of CPU time, but only

30 seconds (set as 3,000 hundredths of a second) of CPU time per

database request. If a call reaches this CPU limit, Oracle stops the

operation to prevent further consumption of CPU time by the session.

 A profile user session can remain connected to the instance for an

unlimited amount of time without being disconnected, but can remain idle

for only 30 minutes before being automatically disconnected.

 A profile user session can perform an unlimited number of logical reads

(data block reads from either disk or server memory), but only 1,000

logical block reads per database request. If a call reaches this limit, Oracle

stops the operation to prevent further consumption of logical reads by the

session.

 A profile user session that connects to the instance using a multithreaded

server can allocate and use up to 200K of private memory for the MTS

session.

EXERCISE 9.19: Altering Profile Settings

You alter the settings of a profile using the SQL command ALTER PROFILE.

 ALTER PROFILE profile LIMIT

 [SESSIONS_PER_USER {integer| UNLIMITED | DEFAULT}]
 [CPU_PER_SESSION {integer| UNLIMITED | DEFAULT}]

 [CPU_PER_CALL {integer| UNLIMITED | DEFAULT}]
 [CONNECT_TIME {integer| UNLIMITED | DEFAULT}]

 [IDLE_TIME {integer| UNLIMITED | DEFAULT}]
 [LOGICAL READS_PER_SESSION {integer| UNLIMITED | DEFAULT}]
 [LOGICAL_READS_PER_CALL (integer| UNLIMITED | DEFAULT}]

 [COMPOSITE_LIMIT {integer| UNLIMITED | DEFAULT}]
 [PRIVATE_SGA {integer [KIM]| UNLIMITED | DEFAULT}]

 [FAILED_LOGIN_ATTEMPTS {integer| UNLIMITED | DEFAULT}]
 (PASSWORD_LIFETIME {integer| UNLIMITED | DEFAULT}]
 [PASSWORD_REUSE_TIME {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_REUSE_MAX {integer| UNLIMITED | DEFAULT}]
 [PASSWORD_LOCK_TIME {integer| UNLIMITED | DEFAULT}]

 [PASSWORD_GRACE_TIME {integer| UNLIMITED | DEFAULT}]
 [PASSWORD_VERIFY_FUNCTION {NULL| function| DEFAULT}]

For example, when you created the new APPDEV profile in the previous exercise,

you did not specify any of the password management settings. Enter the following

ALTER PROFILE statement to specify the basic password management settings for the

new profile.

ALTER PROFILE appdev LIMIT
 FAILED_LOGIN_ATTEMPTS 3
 PASSWORD_LOCK_TIME 1

 PASSWORD_LIFE_TIME 30
 PASSWORD_GRACE_TIME 5

 PASSWORD_REUSE_TIME UNLIMITED
 PASSWORD_REUSE_MAX UNLIMITED;

The previous statement sets the following password management features.

 A profile user can attempt three consecutive logins without success,

after which Oracle automatically locks the account.

 If Oracle locks a profile user's account because of three consecutive failed

login attempts, Oracle keeps the account locked for one full day and then

automatically unlocks the account.

 The lifetime of a profile user's password is 30 days, plus a grace period of

5 days, after which the user must change the password or else Oracle locks

the account.

 A profile user cannot reuse an old password.

NOTE
Oracle enforces all password management features that you set with a user's profile,

whether or not you enable resource limitation with the ALTER SYSTEM command or

the RESOURCE_LIMIT server parameter.

EXERCISE 9.20: Manually Forcing a User's Password to Expire

You can manually force a user's password to expire and require that the user

change the password during his or her next session. To accomplish this task, use the

following form of the SQL command ALTER USER.

ALTER USER user
 PASSWORD EXPIRE

For example, enter the following statement to manually expire RLANE's

password.

ALTER USER rlane

PASSWORD EXPIRE;

EXERCISE 9.21: Using Password Complexity Checking

In the previous exercise, you specified the basic password management settings

for a profile. You can also check the complexity of a profile user's password using the

PASSWORD_VERIFY_FUNCTION parameter of the SQL commands CREATE

PROFILE and ALTER PROFILE. To disable password complexity checking for all

profile users, set the profile's PASSWORD_VERIFY_FUNCTION parameter to NULL.

To enable password complexity checking for all profile users, set the profile's

PASSWORD_VERIFY_FUNCTION parameter to the name of a function that is

designed to check password complexity. Oracle supplies a default function that you must

create using the UTLPWDMG.SQL command script located in the

Oracle_Home\Rdbms\Admin directory, where Oracle_Home is your Oracle home

location. To run this script, start a different instance of SQL*Plus (leave your other

SQL*Plus session intact) and connect as the user SYS. Once you are connected as SYS,

run the UTLPWDMG.SQL command script. For example, the following command runs

the UTLPWDMG.SQL script assuming that the Oracle home location is

O:\Oracle\Ora81:

@O:\Oracle\Ora81\Rdbms\Admin\utlpwdmg.sql;

As of Oracle 11g installed on my computer (in 2015), the location of the above

UTLPWDMG.SQL file is at:

G:\app\pliu\product\11.1.0\db_1\RDBMS\ADMIN

The UTLPWDMG.SQL command script creates a PL/SQL stored function named

VERIFY_FUNCTION and enables the password management features for the default

database profile, including complexity checking with the VERIFY_FUNCTION function.

VERIFY_FUNCTION includes some standard checks for password complexity,

including the following:

 An account's username and password cannot match.

 A password must be at least four characters in length.

 A password cannot be one of the following common strings: "welcome",

"database", "account", "user", "password", "oracle", "computer", or

"abcd".

 A password must contain at least one character, one digit, and one

punctuation mark.

 A new password must differ from the current password by at least three

characters.

After you run the UTLPWDMG.SQL script, exit this SQL*Plus session and

return to your original SQL*Plus session.

Using your original SQL*Plus session (connected as PRACTICE09), alter the

new APPDEV profile to enable password complexity checking for all of the profile's

users. The following statement alters the APPDEV profile to use the setting of the

PASSWORD_VERIFY_FUNCTION parameter of the database's default profile (which

is SYS.VERIFY_FUNCTION).

ALTER PROFILE appdev LIMIT

PASSWORD_VERIFY_FUNCTION DEFAULT;

NOTE
When you configure Oracle to check the complexity of user passwords, users

should not use the ALTER USER command to change their passwords. See your

Oracle documentation for more information about changing user passwords in

this setting.

EXERCISE 9.22: Setting a User's Profile

By default, all users are assigned to use the database's default profile. To set a

user's profile to another profile, you can use the following form of the SQL command

ALTER USER.

ALTER USER user
 PROFILE profile

For example, using your original SQL*Plus session, enter the following ALTER

USER statements to assign the users LELLISON and RLANE to the APPDEV resource

limit profiles.

ALTER USER lellison
PROFILE appdev;

ALTER USER rlane
PROFILE appdev;

EXERCISE 9.23: Experimenting with Password Management Settings

At this point, all users in your practice database are subject to various password

management checks because the default database profile and the new APPDEV profile

have set password management options. In this exercise, let's see what happens when you

try to change the password for LELLISON to a very simple password. Enter the

following statement:

ALTER USER lellison IDENTIFIED BY password;

When Oracle tries to execute this statement, it should return the following errors:

ORA-28003: password verification for the specified password

failed
ORA-20002: Password too simple

Now enter the following statement to set an acceptably complex password for

LELLISON.

ALTER USER lellison IDENTIFIED BY new_password0l;

EXERCISE 9.24: Altering the Default Database Profile

If you plan to use the default database profile to limit resources or enforce

password management, you should pay close attention to the default limits and password

management options set for this profile (see Exercise 9.28). You can adjust the default

database profile's settings using an ALTER PROFILE statement.

For example, you must disable the password management features of the default

database profile so that you can run the SQL command scripts for subsequent chapters

without being prompted to change the SYSTEM account's password. To disable

password management for the default database profile, enter the following ALTER

PROFILE statement.

ALTER PROFILE default LIMIT
PASSWORD_LIFE_TIME UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_LOCK_TIME UNLIMITED
PASSWORD_GRACE_TIME UNLIMITED
PASSWORD_VERIFY_FUNCTION NULL;

NOTE
Once you enable the password management features for a profile, Oracle keeps

track of when each profile users' password expires, and so on, even after you

disable password management features for the profile. Consequently, in 30 days,

Oracle might request that you change the password for existing database

accounts such as SYS, SYSTEM, and SCOTT.

9.5. Displaying Security Information

The following exercises demonstrate some useful queries that you can use to

display information about users, roles, and profiles from your database's data dictionary.

EXERCISE 9.25: Displaying Information about Users

To display information about the users in your database, you can query the

DBA_USERS data dictionary view. For example, enter the following statement to reveal

the account settings for the LELLISON and RLANE user accounts in the practice

database.

SELECT username, account_status, default_tablespace,

temporary_tablespace, profile
FROM dba_users

WHERE username IN ('LELLISON','RLANE');

The result set is as follows:

USERNAME ACCOUNT_STATUS DEFAULT_TABLESPACE TEMPORARY_TABLESPACE PROFILE

-------- -------------- ------------------ -------------------- --------
RLANE EXPIRED USERS TEMP DEFAULT

LELLISON OPEN USERS TEMP DEFAULT

EXERCISE 9.26: Displaying Information About Roles

To display information about the roles in your database, you can query the DBA

ROLES data dictionary view. For example, enter the following statement to list

information about the CONNECT, RESOURCE, DBA, and APPDEV roles in your

database.

SELECT * FROM dba_roles

WHERE role IN ('CONNECT','RESOURCE','DBA','APPDEV');

The result set is as follows:

ROLE PASSWORD

--------------- ---------

APPDEV YES

DBA NO

RESOURCE NO

CONNECT NO

EXERCISE 9.27: Displaying Information about Tablespace Quotas

To display information about the quotas granted for each tablespace in your

database, you can query the DBA_TS_QUOTAS data dictionary view. For example,

enter the following statement:

SELECT tablespace_name, username, bytes, max_bytes

FROM dba_ts_quotas;

The result set for this query should be similar to the following:

WATABLESPACE_NAME USERNAME BYTES MAX_BYTES

----------------- ---------- ------- ---------

USERS PRACTICE09 143360 204800

USERS LELLISON 0 5242880

USERS RLANE 0 -1

USERS PRACTICE08 163840 204800

USERS PRACTICE04 143360 204800

USERS MIC1 122880 204800

USERS PRACTICE05 184320 204800

USERS PRACTICE07 122880 204800

Notice that the MAX_BYTES column of the DBA TS_QUOTAS displays the

code "-1" when a user has an unlimited tablespace quota.

EXERCISE 9.28: Displaying Information about Profiles

To display information about profiles and associated resource limit settings, you

can query the DBA_PROFILES data dictionary view. For example, enter the following

query:

SELECT profile, resource_name, limit

FROM dba_profiles

WHERE profile = 'APPDEV';

The result set is as follows:

PROFILE RESOURCE_NAME LIMIT

------- ----------------------- ---------

APPDEV COMPOSITE_LIMIT DEFAULT

APPDEV SESSIONS_PER_USER 5

APPDEV CPU_PER_SESSION UNLIMITED

APPDEV CPU_PER_CALL 3000

APPDEV LOGICAL_READS_PER_SESSION UNLIMITED

APPDEV LOGICAL_READS_PER_CALL 1000

APPDEV IDLE_TIME 30

APPDEV CONNECT_TIME UNLIMITED

APPDEV PRIVATE_SGA 204800

APPDEV FAILED_LOGIN_ATTEMPTS 3

APPDEV PASSWORD_LIFE_TIME 30

APPDEV PASSWORD_REUSE_TIME UNLIMITED

APPDEV PASSWORD_REUSE_MAX UNLIMITED

APPDEV PASSWORD_VERIFY_FUNCTION DEFAULT

APED PASSWORD_LOCK_TIME 1

APED PASSWORD_GRACE_TIME 5

Chapter Summary

This chapter explained the security features of Oracle that you can use to limit and

monitor access to a database.

 Only a registered database user can access a database once Oracle authenticates a

connection request. You create and manage users with the SQL commands

CREATE USER and ALTER USER, respectively.

 Once connected to a database, a user can perform only those operations that the

user is privileged to execute. You can grant users individual system and object

privileges or use roles to group related sets of privileges and more easily manage

user privileges. You create roles using the SQL command CREATE ROLE and

then grant and revoke privileges to users or roles using the SQL commands

GRANT and REVOKE, respectively.

 Resource limit profiles let you limit a user's access to system resources, such as

CPU time, disk I/Os, and sessions. You create profiles using the SQL command

CREATE PROFILE, and then assign each user to a profile with the SQL

commands CREATE USER or ALTER USER.

